Materialdatenblatt

Aluminiumlegierung ALSi10Mg

Aluminiumgusslegierung in Pulverform, chemische Zusammensetzung entsprechen AlSi10Mg, EN AC-43000, 3.2382

Beschreibung

Aluminiumgusslegierung für dünnwandige und komplexe Geometrien mit guter Fertigkeit, dynamischer Belastbarkeit und Härte. Aufgrund des Bauprozesses von Aufschmelzen und Erstarren entsteht ein Gefüge mit den mechanischen Eigenschaften ähnlich dem T-6 Zustand gegossener Bauteile.

Eigenschaften	Anwendung
 Gute thermische Eigenschaften 	 Automotive
 Gute Festigkeit und Härte 	 Funktionsprototypen
 Hohe dynamische Belastbarkeit 	 Serienteile
 Gute gießtechnologische 	 Luft- und Raumfahrt
Eigenschaften	Motorsport
 Universallegierung 	• uvm.

Chemische Zusammensetzung

Bestandteil	Richtwert [%]		
Al	Rest		
Si	9,0 – 11,0		
Mg	0,25 - 0,5		
Fe	0,4-0,9		
Cu	0,08		
Mn	0,55		
Cr	0		
Ni	0,15		
Zn	0,15		
Pb	0,15		
Ti	0,15		
Sn	0,05		

Physikalische Eigenschaften

Dichte [kg/cm³]	2,68
Elektr. Leitfähigkeit [10 ⁶ ·S/m]	21-26
Wärmeleitfähigkeit bei 20 °C [W/m·K]	130-150
Mittlerer Wärmeausdehnungsbeiwert bei 20 °C [10 ⁻⁶ ·K ⁻¹]	23

Wärmebehandlung¹

Durch gezielte Wärmebehandlung lassen sich Härt, Zugfestigkeit und Bruchdehnungen gezielt beeinflussen. Vorwiegend werden dabei Lösungsglühen oder ein T6-Zyklus angewendet. Ebenso können dadurch Eigenspannungen reduziert werden.

Lösungsglühen: 6 h bei 525 °C Spannungsarm glühen: 2 h bei 300 °C

T6 Wärmebehandlung:

Lösungsglühen: 6 h bei 525 °C
Abschrecken in Wasser
Warmauslagern: 7 h bei 165 °C

Technische Daten

Erreichbare Bauteilgenauigkeit	
kleine Bauteile	ca. ± 0,1 mm
große Bauteile	ca. ±0,2 - 0,5 %
Kleinste Wandstärke	ca. 0,4 - 0,5 mm
Schichtstärke	20 – 60 μm
Oberflächenrauhigkeit	
nach dem Bau	$R_z = 60 \mu m \pm 20 \mu m$
nach dem Mikrostrahlen	$R_z = 20 \mu m \pm 10 \mu m$
Bauteildichte nach Fertigungsprozess	> 99,7 %

Mechanische Eigenschaften²:

Zugfestigkeit R_m [N/mm²]	wie gebaut	Lösungsgeglüht	Spannungsarm geglüht	T6 - WB
horizontale Richtung (XY)	350-370	220-240	290-310	280-300
vertikale Richtung (Z)	ca. 390	ca. 240	ca. 300	ca. 290
Streckgrenze $Rp_{0,2}[\text{N/mm}^2]^3$				
horizontale Richtung (XY)	210-230	ca. 140	160-180	ca. 240
vertikale Richtung (Z)	ca. 240	ca. 140	ca. 170	ca. 260
Bruchdehnung A_5 [%]				
horizontale Richtung (XY)	ca. 5	ca. 16	ca. 5	ca. 8
vertikale Richtung (Z)	ca. 6	ca. 16	ca. 9	ca. 8
E-Modul [kN/mm²]				
horizontale Richtung (XY)	typ. 70			
vertikale Richtung (Z)	typ. 70			
Härte [HWB 2,5/62,5] ⁴	90-115	60-75	75-85	85-100

<u>Hinweis</u>

Die angegebenen Werkstoffkennwerte sind abhängig von Maschine, Pulverwerkstoff, Parametereinstellungen sowie anderen Faktoren, wie die Anisotropie der Bauteile. Sie bieten daher keine ausreichende Grundlage zur Bauteilauslegung. Diese Abhängigkeit der Bedienstrategie spiegelt sich in einer gewissen Streuung der Ergebnisse für lasergeschmolzene Erzeugnisse wider. Somit können bestimmte Eigenschaften des Produktes oder eines Bauteils weder gewährt noch garantiert werden. Diese Angaben dienen lediglich als Richtwerte. Zur Überprüfung der mechanischen Eigenschaften können jederzeit Probekörper angefordert werde.

¹ Nach VDI 3405 Blatt 2.1

² bei Raumtemperatur

³ Zugversuch nach DIN EN 50125

⁴ Härteprüfung nach DIN EN ISO 6508-1